CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department
Boston University

Lecture 07: HO Programming and Type Classes
o Curried Functions

o Folding

o Type Classes

Reading: Hutton Ch. 3 & beginning of 7

You should also look at the Standard Prelude in Appendix B!



HO Programming: Curried Functions

Recall that function slices are created from infix functions/ operators by giving one of the
operands, and leaving the other out. The missing operand is a parameter — this turns a
function of two arguments into a function of one argument:

Main> (372) Main> (\x -> \y -> x"y) 3 2
9 9

Main> (*2) 3 Main> (\x -> x"2) 3

9 9

Main> (37) 2 Main> (\y -> 3%y) 2

9 9

(\y" => 3%y) 2 => 372 => 9



HO Programming: Curried Functions

But notice that what we are doing here is partially applying a function to one of its
arguments, and then stopping halfway through and calling it a new function:

o \
(\X/—>/(\y —?x v)) 3 2

=>5 (\y/j;_g?y))*\\Z

=>p 372

=> 9



HO Programming: Curried Functions

We can do this any time we want, with any lambda expression with more than one
argument:

Main> £ = (\x -> (\y -> x%y)) 3

Main> f 2
9

By referential transparency, this is the same as:

Main> (\x -> (\y -> x%y)) 3 2
9

except that we “froze” the computation after applying the first argument.



HO Programming: Curried Functions

This explains why the following are all completely equivalent:

y z = (X,¥,2)

vy = \z -> (x,vy,2)

x = \y -> (\z -> (x,v,2))
x =\y z > (x,Y,2)

= \x -> (\y -> (\z -> (x,vy,2)))

Hh o Fh

= \Xx vy z => (X,V,2)
which is proved by the type: all these will have the same type:

f ::a-> b -> ¢ -> (a,b,c) .
Notice how the type arrows

(a,b,C) line up with the arr.ows in
the lambda expression!
Not a coincidence!

f=\x ->\y -—> \z —>



HO Programming: Curried Functions

It also explains why all functions can be thought of as unary (one-parameter) functions.

fxyz= (x,v,2)

3
f takes three
arguments 'a' > £ > (3, 'a’ ,True)
True >

and produces a triple



HO Programming: £ takes three

Curried Functions o

H
I

3 . £ =

£’ takes one argument

ifl

v

: 1ot
and produces a function a
£/’ of one argument:

£ty = \z => (3,vy,2)

£’ ' takes one argument and True
produces a value:

£f'r z = (3,7a’,z)

(3,'a’ ,True)

and produces a triple

\x > \y > \z -> (x,vy,2)

f takes one argument and produces a
function £/ of two arguments:

f x=\y -> \z -> (x,V,2)

ifl 4

\ 4

£/7 - (3,'a’,True)

v



HO Programming: Curried Functions

Finally, this explains why function application is left-associative and the arrow (in lambda
expressions and in type expressions) is right-associative:

f 3 ‘'a’ True f ::a -> b -> ¢ -> (a,b,c)
f =\x > \y > \z ->( X,v,2)

(f 3) ‘Ya’ True f ::a-> (b ->c¢c -> (a,b,c))
f=\x -> (\y => \z -> (x,V,2))

((f 3) 'Ya’) True f ::a-> (b -> (c -> (a,b,c)))
f =\x -> (\y > (\z -=> (x,v,2)))

(((£f 3) Ya’) True) f :: (a -> (b -> (c -> (a,b,c))))
f= (\x -> (\y -=> (\z => (x,vy,2))))



HO Programming: Curried Functions

NOTE carefully that these functions DO have the same type:
g :: a -> b ->c

h :: a —> (b -> )

But these functions do NOT" have the same type:
g’ :: a ->Db ->_c

h” :: (a -> b) -> c



Higher-order Programming Paradigms Reading: Hutton Ch. 7.3

Fold (also called reduce) is another function which uses a function as a parameter.
There are foldr (foldr) and foldl (fold left).

foldr right takes a list (constructed with the cons operator : ) and effectively
replaces a (prefix) cons with a function of two arguments, and the empty list with
an “initial value” to get the recursion started:

[ el, e2, e3 ] foldr :: (a->b->b) -> b -> [a] -> Db
foldr £ v [] - v
el : (e2 : e3 : []) foldr £ v (x:xs) = f x (foldr f v xs)
/(')\‘ foldr £ v [el,e2,e3] /f\
el /()\‘ Y )
e2 () eé/\f

P



Higher-order Programming Paradigms Reading: Hutton Ch. 7.3

Thus, to sum the elements of the list, we could write:

foldr (+) O [2,3,4] => 9

2+ (3 4 : 11) 2+ (3 + 4 + 0 )

/ \(:) 2'/+ =T
3/\(=) 3/\" =>4
7N N

=> 90

Essentially, foldr inserts an infix version of £ between every member of the list, and ends with v:

foldr £ v [eiq,ey, ..., €] = e £ e, £ ... £ e, £ v



Higher-order Programming Paradigms Reading: Hutton Ch. 7.3

Here are some other applications of foldr — it is actually more powerful than you
might think at first!

Calculating the length of a list:
foldr addl 0 [2,3,4]

addl xy =1+ y

2 (3 4 (1 ) 2 addl” ( 3 "addl (4 “addl 0) )
1 + (1 + (1 + 0) )
(:) addl => 3
2/ \() 2/ addl => 2
3/ \ (2) 3/ addl => 1



Higher-order Programming Paradigms Reading: Hutton Ch. 7.3

Here are some other applications of foldr — it is actually more powerful than you
might think at first!

Reversing a list:

snoc :: a -> [a] -> [a] -- snoc is “cons” reversed
snoc x xXs = xs ++ [x] -- because it adds to end instead of front

foldr snoc [] [2,3,4]

0 snoc =>[4,3,2]
2/ \ ‘) 2/ \s;wc =>[4,3]
/ \() 3/ }oc => [4]
3 ,
/N 7N

4 [ ]



Higher-order Programming Paradigms Reading: Hutton Ch. 7.3

Here is another applications of foldr — it is actually more powerful than you might
think at first!

Collapsing a list:

foldr (++) [1 [ [2,3]1, [4,5]1, [6,7,8] 1

[2,31:[4,51:06,7,81:1[] [2,3]++[4,5]++[6,7,8]++][]
() el =>[2,3,4,5,6,7,8]
[2,‘?{ \ (2) [2‘4 =>[4,5,6,7,8]
7\ / \
[4,5] /(=)\ [4,5] / \-> [6,7,8]
[6,7,8] [] [6,7,8]

foldr (++) [] [ “hi %, “there ™, “folks!” ] => “hi there folks!”



Higher-order Programming Paradigms Reading: Hutton Ch. 7.3

Do two slides on FOLDL.



Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

An overloaded operator is the same symbol or name, but used for
more than one type of argument:

Note: there is really

2 + 4 3.4 + 5.6 also * -/ no difference between
an “operator’ and

“hi” 4+ ™ there” (Python) “function” — an
operator IS a

True == False 3 /=5 (Haskell) function, but usually

1s represented infix.

Note that data or other syntax 1s sometimes overloaded
‘hi there!’ “hi there!” (Python)
34 canbe Int Integer Float Double (Haskell)

Why do we do this?  Flexibility and convenience and standard math practice!



Type Classes and Overloading Reading: Huttor.l Ch. 3.8, 3.9, 8.5
Hutton Appendix B

Recall: A type is a set of related values and its associated
operators/functions.

types  type classes
A type class is a set of types that share some overloaded / / /

operations/functions. In specific:

o The type class is defined by a set of data objects and

the set of shared operators/functions;
o A type may be a member of multiple type classes;

o A type class may be a subset of another type class

// Queueable Interface

A type CIaSS iS Similar to public interface Queueable {

: . . void enqueue(int n); // insert at the rear of the queue
an lnterface 1n Java: 1t int dequeue(); // Remove and return head of queue
deﬁnes What Operations int peek(); // Return head of queue without removing

. boolean isEmpty();
you can usc Wlth the type. int size(); // returns number of integers in queue



Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

Example: The type class Eq contains all the Equality Types, those that

implement the equality operators:
A type contained in a type class is

called an instance of that class.

Eq
/ @ Double \
Integer

Int

All types except

Bool for function
Tuples types are

k List instances Ofy




Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

*Main> 5 ==
False Eq
*Main> 3.4 == 3.399999999999999 //’

False

*Main> ('a', (0, ["hi","there"])) == ('a', (0@, ["hi","there"]))
True

*Main> [2,3,4,5] /= [3,2,4,5]

Integer

True
*Main> a = 5
*Main> b = 5 All types except

. for function
*Main> a == b pes are
True k instances ofy
*Main> (+) == (+)

<interactive>:176:1: error:
e No instance for (Eq (Integer -> Integer -> Integer))
arising from a use of ‘==’
(maybe you haven't applied a function to enough arguments?)
e In the expression: (+) == (+)
In an equation for ‘it’: it = (+) == (+4)
*Main> incr x = x + 1

Mains :t incr Naturally, these operators are

incr :: Num a => a —> a polymorphic:
*Main> incr == incr
<interactive>:179:1: error: *Main> :t (==)
e No instance for (Eq (Integer -> Integer)) (==) :: Eg a => a -> a -> Bool

arising from a use of ‘==’ « :
(maybe you haven't applied a function to enou Main> :t (/=)
e In the expression: incr == incr (/=) :: Eq a => a -> a -> Bool

In an equation for ‘it’: it = incr == incr « :
*Main> Main>



Type Classes and Overloading

Naturally, these operators are polymorphic:

*Main> :t (==)
(==) :: Eq a => a -> a -> Bool

*Main> :t (/=)
(/=) :: Eq a => a -> a -> Bool
*Main>

However, the polymorphism is restricted to types
which are instances of Eq:

Eqg a => a -> a -> Bool
l |

class constraint

This says: “For any type a which is an instance of

Eq, the function has type a -> a -> Bool ”;

any other type is forbidden.

Reading: Hutton Ch. 3.8, 3.9, 8.5




Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

The type class Ord is a subset of Eq, and contains those types that can be totally
ordered and compared using the standard relational operators:

(<) :: Ord a => a -> a -> Bool
(>) :: Ord a => a -> a -> Bool
(=) :: Ord a => a -> a -> Bool
(=) :: Ord a => a -> a -> Bool
min :: Ord a => a -> a -> a

max :: Ord a => a -> a -> a



Type Classes and Overloading Reading: Hutton Ch. 3.8, 3.9, 8.5

The type class Eq is a superset of Ord, which contains those types that can be
totally ordered and compared using the standard relational operators.

Every instance of Ord is an instance of Eq, i.e., Ord € Eq, which is similar to
inheritance in Java and object-oriented languages:

Ord € Eq
Base Class randfather
Eq: == /= Eq
l Intermediate
class Father
Ord: <> <=\>= Ord
min max
Derived Child

Class



